EMPA/BUWAL studies on NO₂ emissions

NO₂ emissions by city buses

Jacques LEMAIRE (AEEDA) & Andreas MAYER (TTM)

IDRAC 5 October 2004

BUWAL studies on NO₂ (1)

- These studies are not yet published, but released for the use within CARB
- These studies are complete appreciations of the exhaust control technologies
- CRTs show excellent performances in controlling PM mass and number
- But there is a serious concern about NO₂ especially at low load (city driving pattern)

BUWAL studies on NO₂ (2)

- The main purpose of the first study was to check emissions from a Euro 2 engine equipped with a CRT for 7 months (Volvo)
- Reference emissions are those of 1990 (Euro 0) engines recently retrofitted with a CRT (NAW and Mercedes buses)
- Volvo bus was operated with 10 and 50 ppm S, NAW with 50 ppm and Mercedes with 10 ppm

Original report available at EMPA

Report of EMPA on Euro 0 and Euro 2 buses fitted with commercial CRT

Report No. 411289 / 2 Air Pollution / Environmental Technology Laboratory

Contact person at EMPA: Lukas Hemmenegger <u>lukas.hemmenegger@empa.ch</u>

NOx & NO₂ at exhaust of a Mercedes bus fitted with a CRT

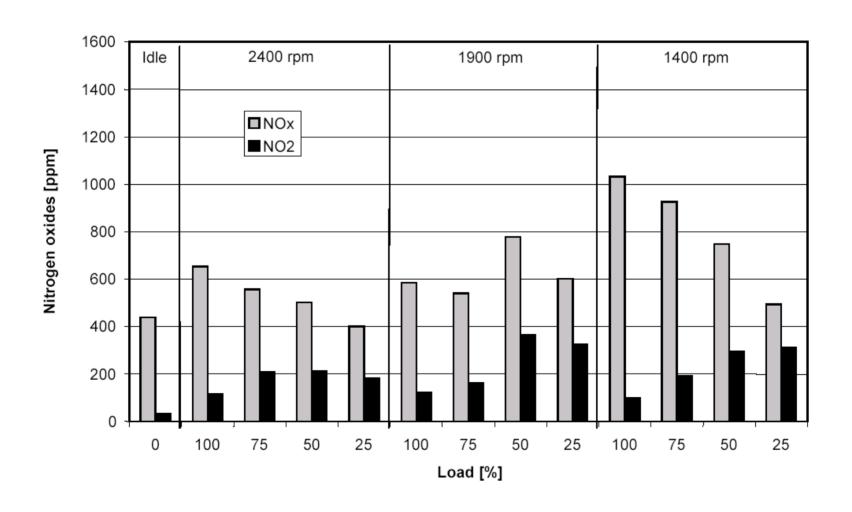


Fig. 1: Nitrogen oxide concentrations from vehicle No.1 (SG 3309, 50 ppm S)

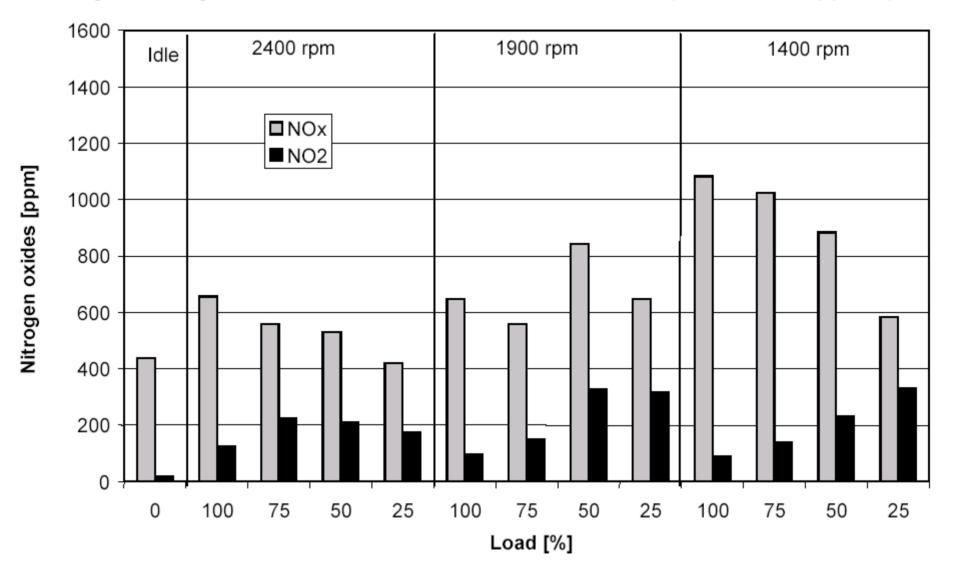
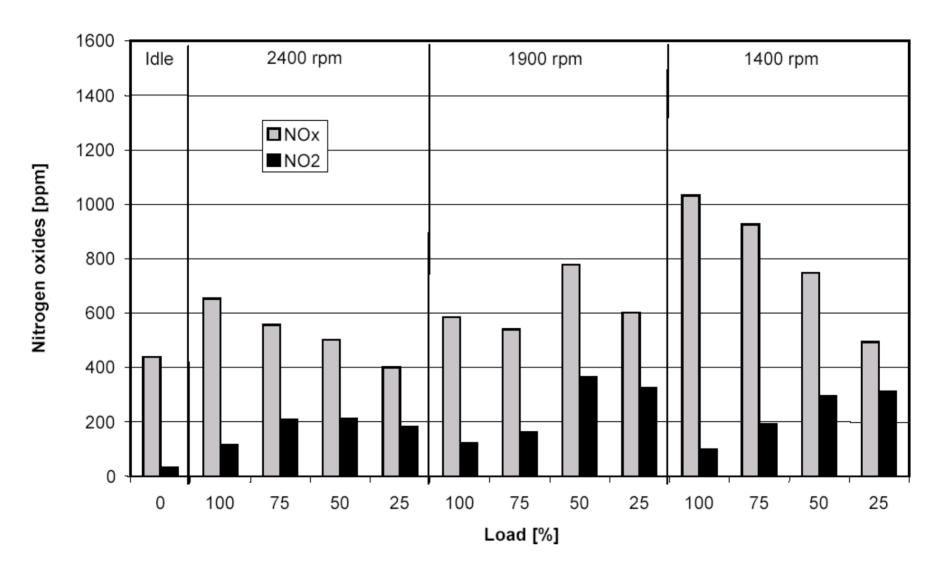



Fig. 2: Nitrogen oxide concentrations from vehicle No. 2 (SG 3309, 10 ppm S)

Jacques LEMAIRE and Andreas MAYER

Fig. 3: Nitrogen oxide concentrations from vehicle No. 3 (ZH 540689)

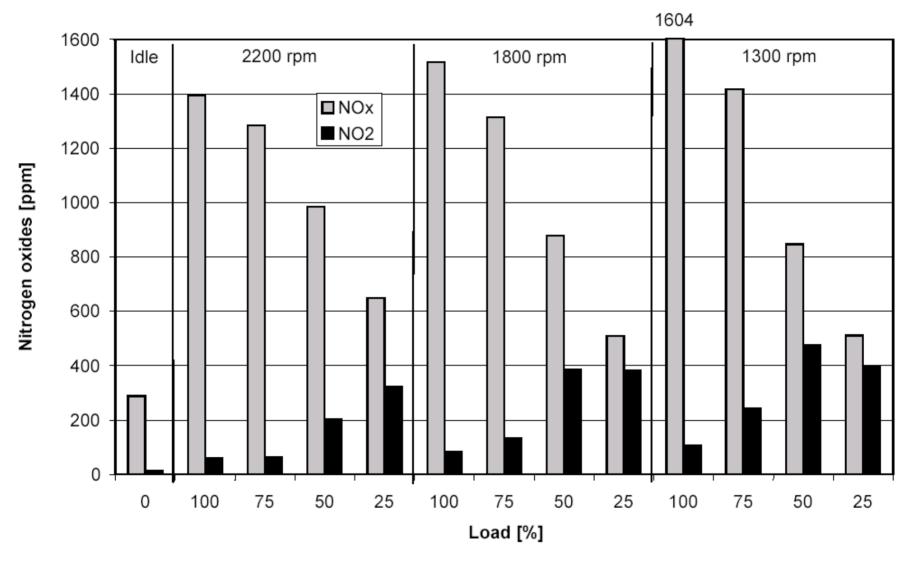


Fig. 4: Nitrogen oxide concentrations from vehicle No. 4 (SG 221820)

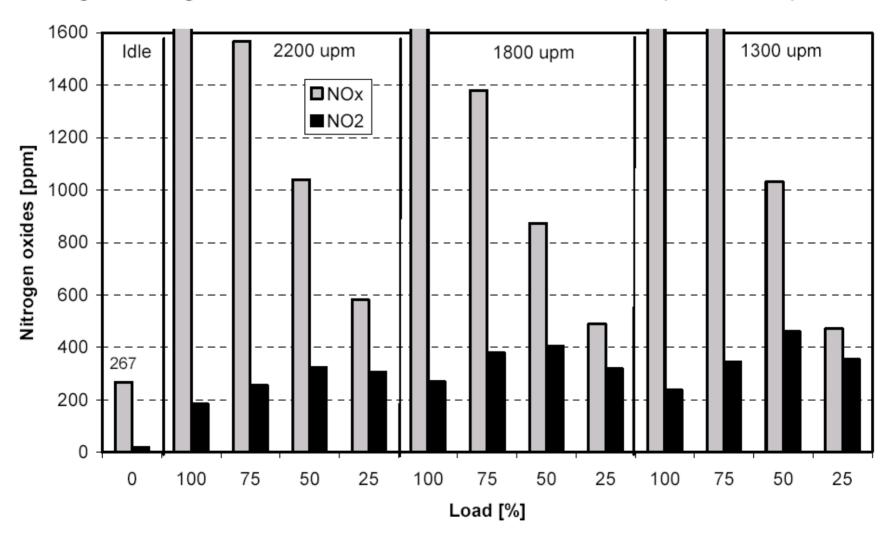


Fig. 5: Nitrogen dioxide fraction vs. load

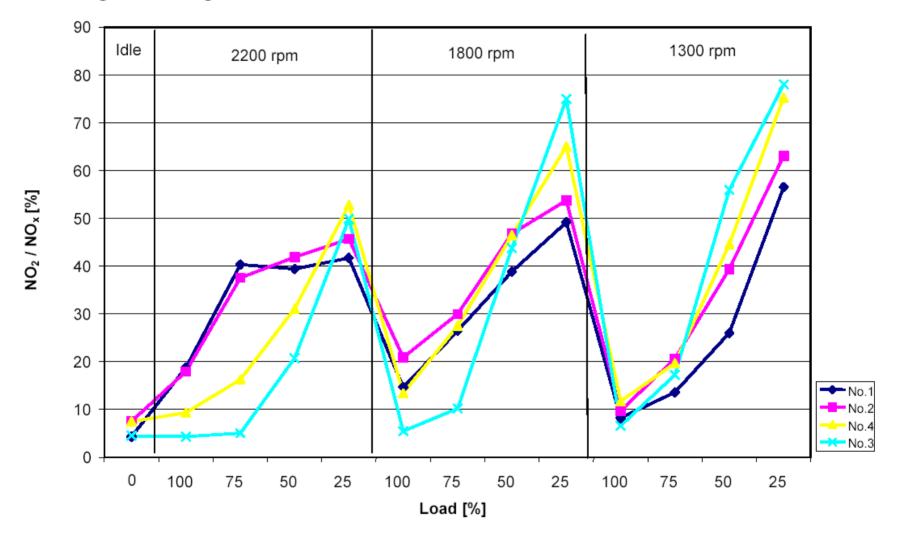


Fig. 6: Nitrogen dioxide concentration vs. load

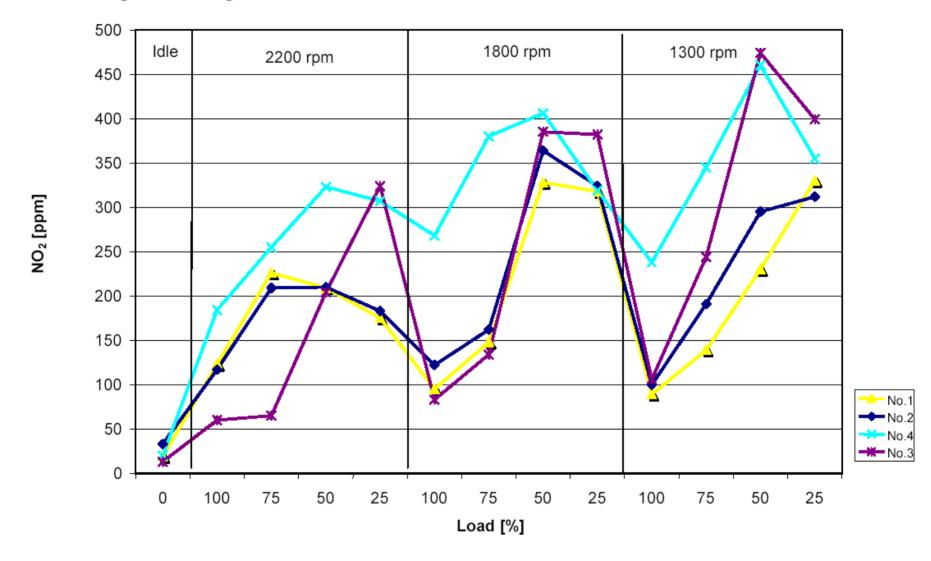


Fig. 7: Nitrogen dioxide fraction upstream and downstream of CRT system

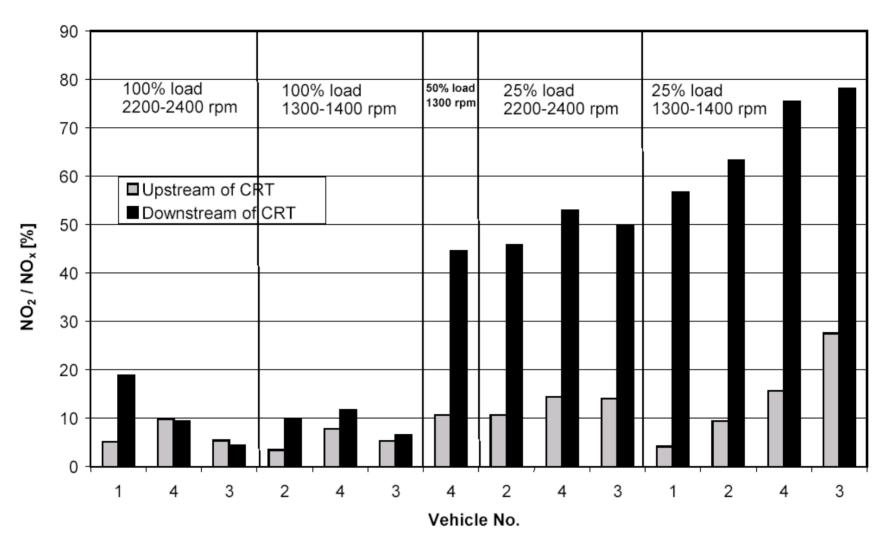


Fig. 8: Nitrogen dioxide concentrations upstream and downstream of CRT system

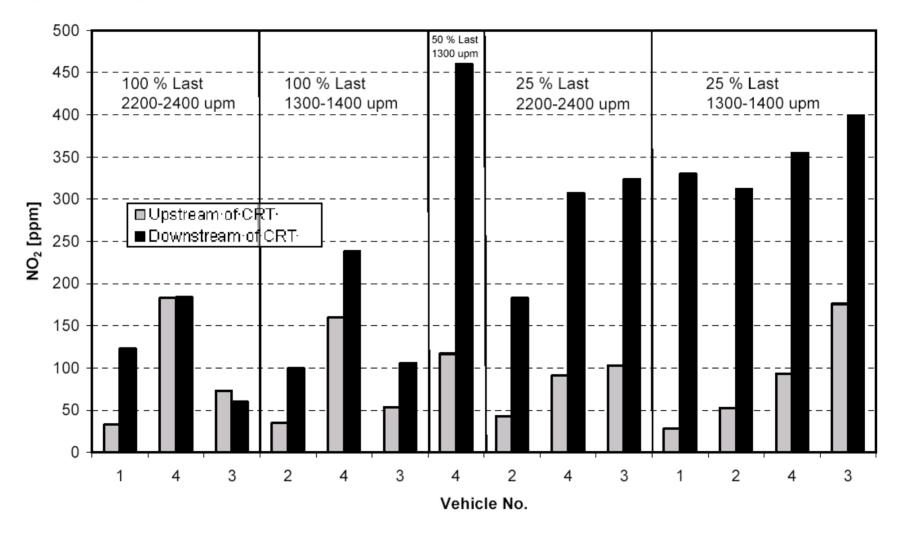
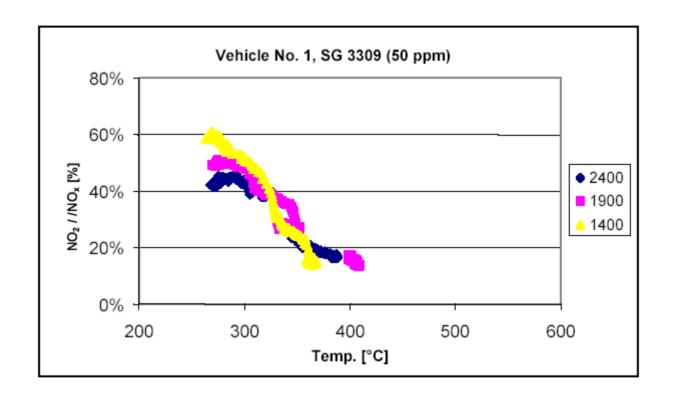
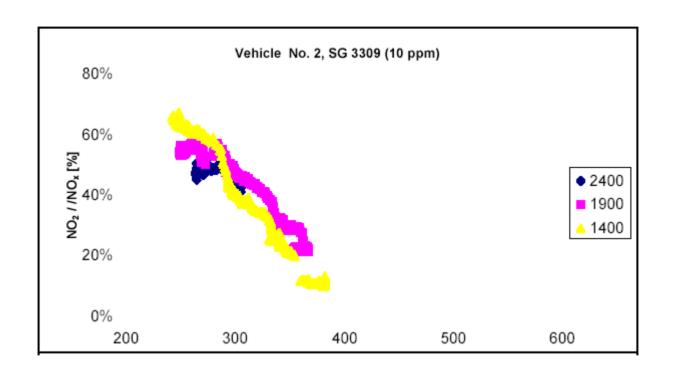
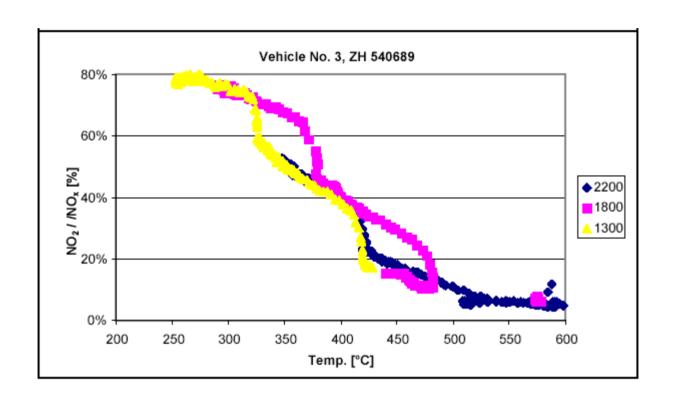
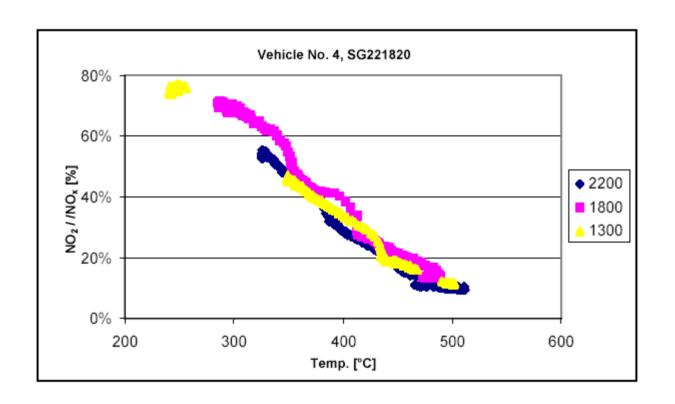






Fig. 9: Formation of nitrogen dioxide (NO₂/NOx) as a function of exhaust gas temperature and speed

Mains results

- NO₂ /NOx ratio upstream of CRT are highly variable with engine type and operating conditions (5 to 30%)
- Downstream of CRT, at low load & low speed, the ratio can reach 80%, with a lowest at 55%
- Downstream of CRT, at low load & medium speed, the variation from an engine to another one is smaller, ratio are between 45 and 55%
- These areas of engine map are representative of city driving conditions and, in the USA, typical of operating conditions of school buses and urban vehicles.

US perspectives

- No US engines were tested by EMPA, they could behave differently
- Recommendation is to check US engines not on the transient test cycle (mainly representative of highway driving) but on city driving cycles and better on some steady state points which are supposed to induce the highest ratio of NO₂

NO₂ levels are highly dependent of operating conditions

Type of Catalyzed DPF

2000 rpm / full load 2000 rpm / 375 Nm 2000 rpm / 250 Nm 2000 rpm / 50 Nm 1400 rpm / full load 1400 rpm / 440 Nm 1400 rpm / 292 Nm Idle (790 rpm)

Without DPF

2000 rpm / full load 2000 rpm / 375 Nm 2000 rpm / 250 Nm 2000 rpm / 50 Nm 1400 rpm / full load 1400 rpm / 440 Nm 1400 rpm / 292 Nm Idle (790 rpm)

CRF #3

mean	mean		
Temp.	NO ₂		
[°C]	[ppm]		
457	153		
405	290		
332	328		
208	68		
443	330		
	<mark>600</mark>		
<mark>317</mark>	<mark>658</mark>		
<mark>121</mark>	0		
mean	mean		
T5	NO ₂		
[°C]	[ppm]		
442	25		
392	15		
325	23		
206	28		
440	13		
<mark>396</mark>	<mark>5</mark>		
<mark>316</mark>	<mark>25</mark>		
<mark>118</mark>	<mark>48</mark>		
	Temp. [°C] 457 405 332 208 443 399 317 121 mean T5 [°C] 442 392 325 206 440 396		

CRF #4

CRF #4				
mean	mean	mean		
NO ₂ /NO _X	Temp. NO ₂			
[%]	[°C]	[ppm]		
14%	464	160		
30%	406	265		
56%	332	300		
38%	210	78		
16%	446	338		
<mark>28%</mark>	<mark>397</mark>	<mark>425</mark>		
<mark>49%</mark>	<mark>315</mark>	<mark>440</mark>		
10%	119	25		
mean	mean	mean		
NO ₂ /NO _X	Т5	NO ₂		
[%]	[°C]	[ppm]		
6%	447	75		
6%	390	58		
7%	326	48		
19%	207	40		
5%	442	118		
<mark>6%</mark>	<mark>390</mark>	<mark>103</mark>		
<mark>7%</mark>	<mark>312</mark>	<mark>80</mark>		
25%	116	<mark>50</mark>		

courtesy of VERT

NO₂ emissions with non PGM coated systems

courtesy of VERT

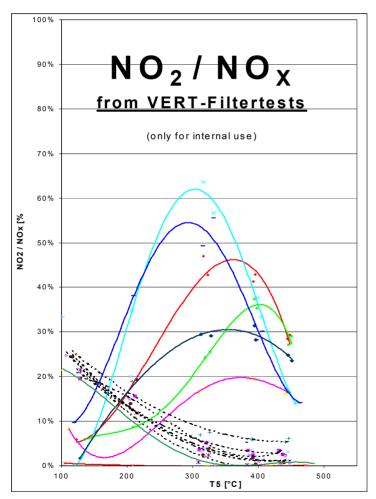
DPF type

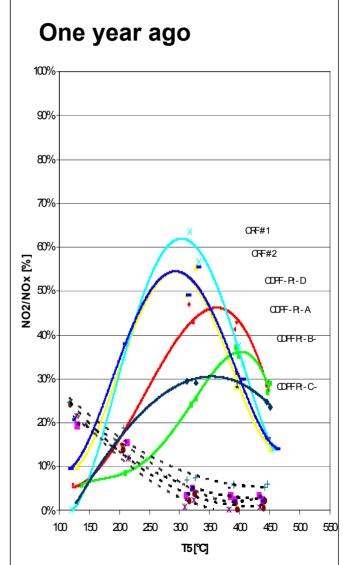
2000 rpm / full load 2000 rpm / 375 Nm 2000 rpm / 250 Nm 2000 rpm / 50 Nm 1400 rpm / full load 1400 rpm / 440 Nm 1400 rpm / 292 Nm Idle (790 rpm)

Without DPF

2000 rpm / full load 2000 rpm / 375 Nm 2000 rpm / 250 Nm 2000 rpm / 50 Nm 1400 rpm / full load 1400 rpm / 440 Nm 1400 rpm / 292 Nm Idle (790 rpm)

Thermal regeneration


mean	mean	mean		
NO₂/NO _X	Temp. NO ₂			
[%]	[°C]	[ppm]		
1%	484	8		
0%	417	5		
1%	343	5		
9%	215	23		
1%	463	18		
<mark>1%</mark>	<mark>423</mark>	<mark>10</mark>		
0%	323	5		
22%	103	<mark>43</mark>		
mean	mean	mean		
NO ₂ /NO _X	Temp.	NO ₂		
[%]	[°C]	[ppm]		
3%	445	40		
4%	389	35		
5%	323	35		
20%	206	48		
1%	445	30		
<mark>2%</mark>	396	<mark>38</mark>		
3%	315	35		
33%	102	<mark>63</mark>		


Base metal cat DPF + FBC

		_
mean	mean	mean
NO ₂ /NO _X	Temp.	NO ₂
[%]	[°C]	[ppm]
0%	474	0
0%	408	0
0%	334	0
0%	209	0
0%	471	3
<mark>0%</mark>	<mark>411</mark>	3 <mark>3</mark> -3
0%	322	-3
<mark>1%</mark>	105	1
mean	mean	mean
NO₂/NO _X	Temp.	NO ₂
[%]	[°C]	[ppm]
2%	441	30
2%	387	25
4%	322	28
15%	205	35
1%	448	13
<mark>1%</mark>	<mark>401</mark>	<mark>18</mark>
2%	320	25
<mark>25%</mark>	<mark>107</mark>	<mark>50</mark>

Overall results on different systems

Recently <u>courtesy of VERT</u>

IDRAC 5 October 2004

Jacques LEMAIRE and Andreas MAYER

NIOSH report April 1, 2004 on Stillwater mine experiment

During normal mining operations

"Both tests #2 and # 3 were terminated, during the sampling period, due to high concentrations of NO2 detected by the personal multi-gas monitor carried by the operator of the truck #921 35. During test #2, while vehicles #92 135 and #92535 were at the development section, the monitor showed NO2 concentrations higher than 5 ppm, the 1973 ACGIH short term exposure level (STEL) for this gas adopted by MSHA (30 CFR 57.5001 1995). During test #3, when vehicle #92 135 was at the orepass, the monitor carried by the operator showed concentrations in excess of 5 ppm. Elevated NO2 exposures resulted in the removal of personnel from the work area. Exposures above 5 ppm were not reported during test #4; however, the peak concentrations of NO2 measured at the downstream sampling station (Figure 10) indicate that personal exposures might have been relatively high in this case as well."

page 19

courtesy of NIOSH

NIOSH Stillwater test site

During normal mining operations

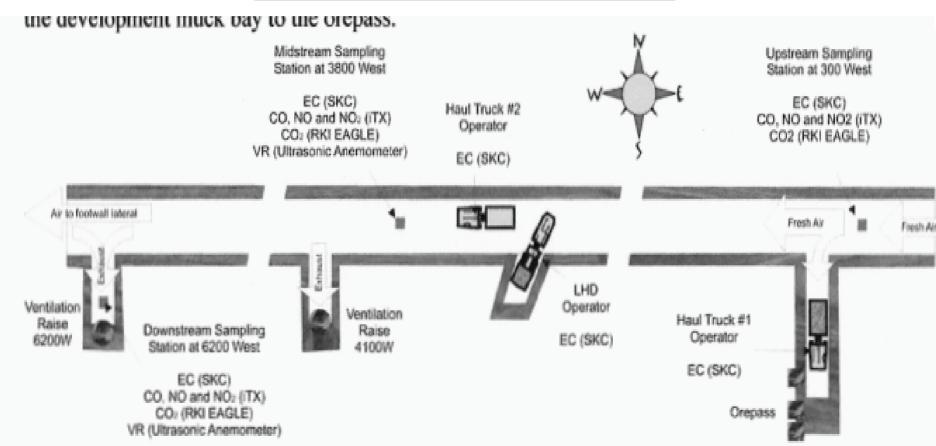
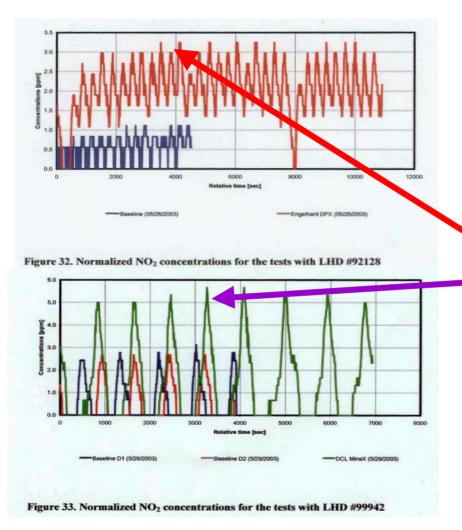


Figure 1. Schematic of the test zone (not to scale)

courtesy of NIOSH

Stillwater in remote gallery


courtesy of NIOSH

Measured in a remote gallery, the tested vehicle being alone

Table 11. Normalized concentrations of carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO), and nitrogen dioxide (NO2) at downstream sampling station

Test Type		CO CO ₂ [ppm]			NO [ppm]		NO ₂ [ppm]	
	Max.	Ave.	Max.	Ave.	Max.	Ave.	Max.	Ave.
#92128 Haul Truck, MS	HA vent rat	e 12000 c	fm	100				
Baseline	11.1	6.7	3834	2924	22.2	16.9	1.1	0.6
Engelhard DPX	0.0	0.0	3793	2718	18.9	12.5	3.2	2.1
#92506 LHD, MSHA ver	nt rate 11500) cfm						
Baseline, D1	18.5	2.3	6268	2104	27.7	5.0	0.9	0.0
Baseline, D2	18.4	2.6	5874	2201	23.0	5.3	0.9	0.0
#92526 LHD, MSHA ver	nt rate 10000) cfm						
Baseline	17.5	6.4	7820	3699	40.8	17.0	2.6	0.9
Baseline / PTX	0.0	0.0	7622	3821	41.3	18.6	2.9	1.0
Biodiesel B20 / PTX	0.0	0.0	7450	3826	40.1	19.3	2.9	1.1
Biodiesel B50 / PTX	0.0	0.0	7622	3855	44.2	21.1	3.5	1.3
#99942 LHD, MSHA ver	nt rate 15000) cfm						
Baseline, D1	24.2	4.5	8740	2849	50.2	13.5	3.1	0.6
Baseline, D2	23.4	4.4	9028	2861	43.3	11.2	2.7	0.5
DCL MineX	0.0	0.0	8656	2713	43.3	11.2	5.7	1.5

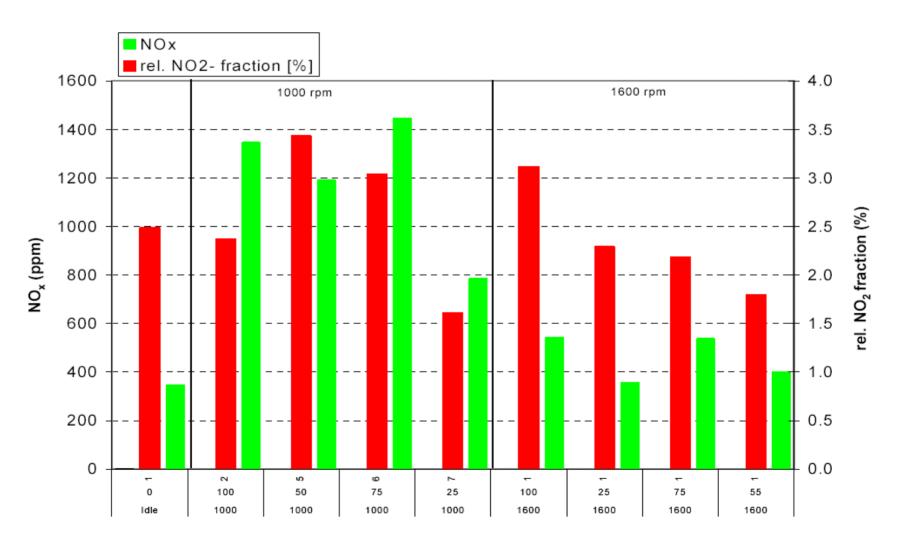
Stillwater NO₂ in remote gallery

- With only one vehicle equiped with commercial CDPF in a remote gallery, the limit of 3 ppm, which is the legal exposure during 15 mn, is regularly met or even exceeded
- Engine base lines varie but for the people exposed to the emission the only valid limit is the threshold of exposure

courtesy of NIOSH

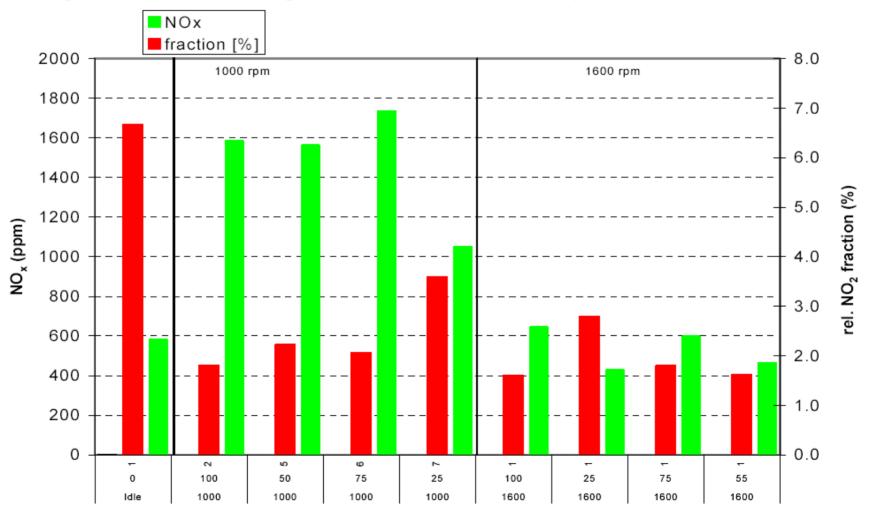
Original report available at EMPA

Report on FBC (Octel) + base metal catalyzed SiC filter (Haldor Topsoe)


Report No. 433'356 Air Pollution / Environmental Technology Laboratory

Contact at EMPA: Lukas Emmenegger <u>lukas.emmenegger@empa.ch</u>

Alternative system with FBC


Figure 1: Ratio of nitrogen oxide concentrations downstream of filter

Jacques LEMAIRE and Andreas MAYER

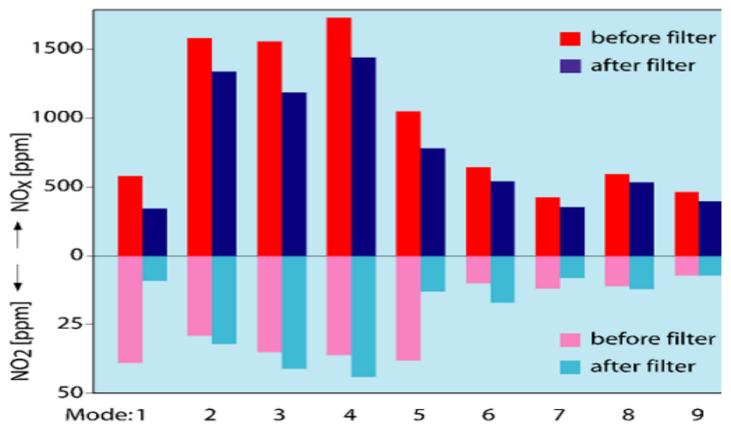
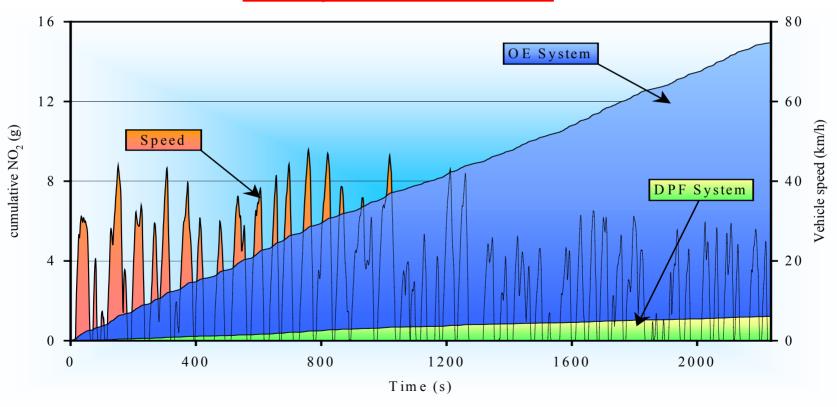

Alternative system with FBC

Figure 2: Ratio of nitrogen oxide concentrations upstream of filter

Alternative system with FBC on a Euro 3 bus


NO_X- and NO₂-emissions with VERT particle filte base metal coated + FBC

Vehicle: Volvo B12BLL, Euro 3 Test: ESC 9 mode stationary

Further field application of DPF + FBC Cumulative NO₂ emissions

courtesy of ADASRA-OCTEL

Hot or cold measurements of NOx and NO₂

- Temperature of gases is a key factor of accuracy when measuring NOx and NO₂
- NO₂ value is in fact NOx NO
- Following graphs are extracted from a Swiss study (Biel University) and show the huge influence of temperatures
- Another conclusion is that FBC does not produce NO₂, while CRT produces a lot especially detectable in hot gas flow

Hot and cold measurements Discussion

- It is hardly believable that only a change of temperature can justify this difference in NO₂ levels: we believe that explanation is more likely in the <u>fast reactivity of NO₂ with water to give HNO₃ which is no more measured as NO_x
 </u>
- If there is some condensed water in cold measurement circuit, the level of NOx which is measured is reduced and therefore the level of NO₂

NOx & NO₂ with CRT courtesy of Biel University

Vergleich der NO₂ - Werte bei kalter und heisser Messung

mit CRT Partikelfilter & Dieselkraftstoff < 50 ppm; Liebherr D914T

 $NO_2 = NO_4 - NO$

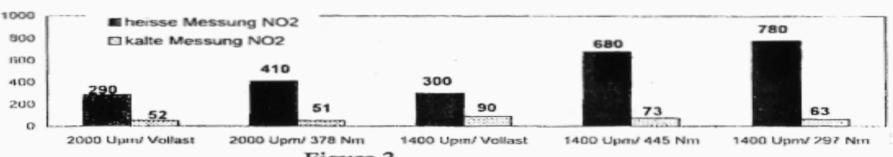


Figure 3

Vergleich der NO_x - Werte bei kalter und heisser Messung

mit CRT Partikelfilter & Dieselkraftstoff < 50 ppm; Liebherr D914T

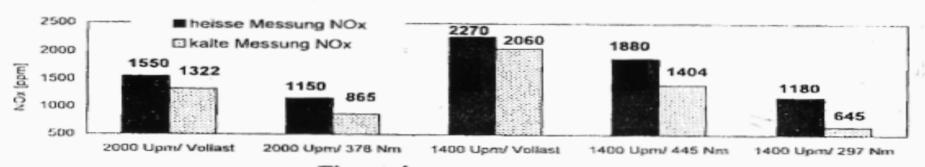


Figure 4

NOx & NO₂ produced by FBC

courtesy of Biel University

Vergleich der NO₂ - Werte bei kalter und heisser Messung

mit IBIDEN B-1 Partikelfilter & Additiv Satacen; Liebherr D914T

NO. = NO. - NO

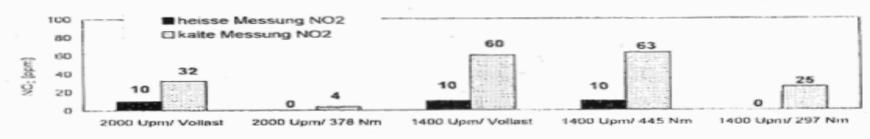


Figure 1

vergleich der NOx - Werte bei kalter und heisser Messung

mit IBIDEN B-1 Partikelfilter & Additiv Satacen; Liebherr D914T

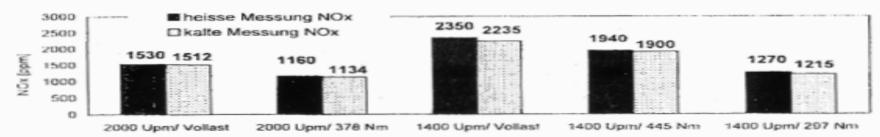


Figure 2

Discussion (1)

- No discussion about the necessity to eliminate the PM by using appropriate filters
- The discussion about counting or not the liquid droplets represent a risk to delay any decision while most of the specialists in health effects admit today that the droplets have a risk factor which must be related with their mass, while solid soot risk must be related with size and number

Discussion (2)

For BUWAL appropriate means:

- filters efficiencies must be also measured by number in order to eliminate problems linked with mass measurements (but mass measurement must be kept for reference)
- ability to avoid formation of NO₂ in all operating conditions must be a bonus in the process of verification of exhaust controls
 - not to exceed limits have to be defined on city driving cycles or on steady state tests

Conclusions (1)

- Filter efficiency must be qualified by ability to remove all categories of soot particles from the exhaust stream (only number give an accurate rating)
- Exposure risks due to high levels of NO₂ emissions downstream of DOCs and filter systems containing Platinum must be taken in account in any verification procedure

Conclusion (2)

- Measuring NO₂ on transient cycles does not reflect the risk of exposure in microenvironnements (cabin of vehicles or buses, spot places where school buses or urban vehicles agglomerate, road tunnels)
- Only measurements on selected steady states (for the same reason EST was introduced in certification (NOx) of HD engines) together with NTE limits will give an accurate evaluation of risks

Discussion (3)

- Another approach could be to measure NO₂ on city driving cycles, as developed in certain cities. These cycles include a majority of low speed / low load engine operating conditions where the formation of NO₂ is maximum
- It could be premature to define any type of regulation before achieving individual exposure risk evaluation in field conditions

Acknowledgements

Co-authors wants to thanks the following organizations, industries and persons who provide the original data:

EMPA: Dr. Lukas Hemmenegger

Biel University: Prof. Jan Czerwinsky

VERT network

NIOSH: Aleksandar Bugarski

ADASTRA - OCTEL: Paul Richards